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1 Introduction

The applications of holographic gauge/gravity correspondences to the study of more and
more diverse phenomena are ever widening in scope. Over the last half a decade the
links between finite temperature generalizations of AdS/CFT and experimental heavy-ion
collisions have become much more concrete and the theoretical methods available to us
are yielding ever deeper results concerning the properties of the quark-gluon plasma (see
ref. [1, 2] for a recent review). Moreover in the last year the links between holography
and condensed matter systems have also flourished, with work on superconductivity, and
superfluidity, quantum phase transitions and both the classical and quantum hall effects
having recent successes (e.g. refs. [3, 4] and references therein).

In the present work we extend the investigation of holographic gauge theories in the
presence of external magnetic fields from the work first studied in ref. [5]. In this paper
we are interested in finding both universal properties of strongly coupled gauge theories
in the presence of magnetic fields, as well as in the different phenomena exhibited in such
theories in a variety of space-time dimensions.
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The phenomenon of dynamical flavor symmetry breaking catalysed by an arbitrarily
weak magnetic field is known from refs. [6, 7] and refs. [8–10]. This effect was shown to
be model independent and therefore insensitive to the microscopic physics underlying the
low energy effective theory. In particular the infra-red (IR) description of the Goldstone
modes associated with the dynamically broken symmetry should be universal. We therefore
expect to be able to study this phenomenon using the holographic formalism. The aim
of the present study will be to investigate the dynamics of the Goldstone modes and
construct the low energy chiral Lagrangian of theories both in 3+1 and 2+1 dimensions in
the presence of external magnetic fields, showing that the appropriate holographic models
give precisely the results expected from the traditional field theory approach.

The effective dynamics of fermion pairing, in d + 1 dimensions, in the presence of an
external magnetic field is constrained to d − 2 spatial dimensions. For this reason there
are marked differences in the phenomenology of such systems in two and three spatial
dimensions. In 2+1 dimensions refs. [7]–[10] Poincare symmetry is broken by the magnetic
field (there is no longer any trace of the original boost invariance), removing the strong
constraints on the dynamics of Goldstone modes imposed by special relativity. The naive
Goldstone boson counting therefore does not hold and the resulting dispersion relation for
the Goldstone modes takes a quadratic form, unlike in the case of 3+1 dimensions where an
SO(1, 1) subgroup of SO(3, 1) constrains the dynamics. Although the number of Goldstone
particles is no longer constrained in the non-relativistic setting, the number of Goldstone
fields is fixed by the dimension of G/H (G=symmetry of the action, H=symmetry of the
ground state). We will show that this also holds in the AdS/CFT context.

The 2+1 dimensional model is of particular interest because, as shown in ref. [11], the
low energy effective description is that of magnon excitations in a ferromagnet. Using a
D3/D5 brane intersection we will be able to reproduce such a result at quadratic order in
the chiral Lagrangian. Moreover such 2+1 dimensional theories may have relevance in the
arenas of the quantum hall effect, and high Tc superconductivity.

In addition to the phenomena discussed specifically in two and three spatial dimen-
sions we show that certain universal behaviors are exhibited holographically in the present
context. Here we will study holographic systems T-dual to the D3/D7 flavor model and
show that the existence of an arbitrarily small magnetic field induces a spiral behaviour
in the equation of state for such systems. In the limit that the chiral symmetry of the
underlying theory is preserved, this equation of state can be studied analytically and such
a symmetric vacuum can be shown to be unstable. This is holographically equivalent to
the findings of refs. [6]–[10] — flavor symmetry breaking is induced dynamically by the
presence of a magnetic field.

The outline of the present paper is as follows.
In section 2 we will return to the D3/D7 brane intersection in the presence of an

external magnetic field, discussed in ref. [5]. We shall show explicitly how the magnetic
catalysis of flavor symmetry breaking is realised in the holographic system, including the
calculation of the chiral Lagrangian to second order in the low energy degrees of freedom.
We will show that the Gell-Mann–Oakes–Renner relation holds analytically and obtain the
dispersion relation for the Goldstone modes.
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In section 3 we turn to the case of the D3/D5 defect theory and show here how the
SO(3) flavor symmetry is dynamically broken to the U(1) subgroup in the presence of a
magnetic field. In this non-relativistic system we find the Goldstone modes and show that
the number of massless modes is not the same as the number of broken generators, but
satisfies a more general counting rule [24] applicable for non-relativistic systems. We also
show that the single Goldstone mode satisfies a modified Gell-Mann–Oakes–Renner relation
and a quadratic dispersion relation. Again we obtain the dispersion relation analytically in
the small mass limit and find the low energy effective Lagrangian which describes magnon
excitations in a ferromagnet.

In section 4 we prove that the magnetic catalysis of dynamical symmetry breaking is
a universal effect in gauge theories dual to Dp/Dq intersections in the appropriate decou-
pling limit. This proof involves showing that all such systems exhibit a self-similar spiral
behaviour in their equation of state which leads to an instability for the solution with zero
dynamical mass. Just as in the work of ref. [7] this effect is independent of the magnitude
of the external magnetic field.

2 Mass generation in the D3/D7 system

In this section we will review the results of refs. [5, 12, 13], where a holographic study of
flavored N = 4 supersymmetric Yang-Mills in an external magnetic field was studied using
the D3/D7 system. We will focus on the effect of mass generation by magnetic catalysis in
this theory and provide a detailed analysis of the pseudo-Goldstone mode associated to the
spontaneous breaking of a global U(1) R-symmetry. In particular we will show that the
Gell-Mann–Oakes–Renner relation for the mass of the corresponding η′ meson is satisfied.

The D3/D7 system provides a dual holographic description of Nf fundamental N =
2 hypermultiplets coupled to N = 4 SU(Nc) supersymmetric Yang Mills theory in the
quenched approximation Nf � Nc [14]. At zero separation between the D3 and D7-
branes the fundamental hypermultiplets are massless and the β-function of the theory is
proportional to Nf/Nc. Thus in the quenched approximation the β-function vanishes and
the corresponding gauge theory is conformal. The global SO(6) R-symmetry of the N = 4
SYM theory is broken to an SU(2)×U(1) R-symmetry, the U(1) corresponding to rotations
in the 2-plane transverse to both the D3 and D7-branes. The left and right handed fermions
of the hypermultiplet have opposite charges under this U(1)R and thus the formation of a
fermionic condensate 〈ψ̄ψ〉 would lead to the spontaneous breaking of this symmetry.

2.1 Spontaneous symmetry breaking

There are various ways in which one can study the breaking of the chiral symmetry holo-
graphically. This has been studied in the past by the deformation of AdS5 × S5 by a field
corresponding to a marginally irrelevant operator on the gauge theory side refs. [16–18]. In
the present case however we will stimulate the formation of a condensate by turning on the
magnetic components of the U(1) gauge field of the D7-branes Fαβ (equivalent to exciting
a pure gauge B−field in the supergravity background). This U(1) gauge field corresponds
to the diagonal U(1) of the full U(Nf ) gauge symmetry of the stack of D7-branes. Since
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the D7-branes wrap an infinite internal volume, the dynamics of the U(Nf ) gauge field is
frozen in the four dimensional theory and the U(Nf ) gauge symmetry becomes a global
flavor symmetry U(Nf ) = U(1)B × SU(Nf ). Therefore the U(1) gauge field that we con-
sider corresponds to the gauged U(1)B baryon symmetry and the magnetic field that we
introduce couples to the baryon charge of the fundamental fields [26].

The problem thus boils down to studying embeddings of probe D7-branes in the AdS5×
S5 background parameterized as follows:

ds2 =
ρ2 + L2

R2

[
−dx2

0 + dx2
1 + dx2

2 + dx2
3

]
+

R2

ρ2 + L2

[
dρ2 + ρ2dΩ2

3 + dL2 + L2dφ2
]
,

dΩ2
3 = dψ2 + cos2 ψdβ2 + sin2 ψdγ2,

gsC(4) =
u4

R4
dx0 ∧ dx1 ∧ dx2 ∧ dx3; eΦ = gs; R4 = 4πgsNcα

′2 , (2.1)

where ρ, ψ, β, γ and L, φ are polar coordinates in the transverse R4 and R2 planes respec-
tively.

Here xa=1...3, ρ, ψ, β, γ parameterize the world volume of the D7-brane and the following
ansatz is considered for its embedding:

φ ≡ const , L ≡ L(ρ) ,

leading to the following induced metric on its worldvolume:

ds̃ =
ρ2+L(ρ)2

R2

[
−dx2

0 +dx2
1 +dx2

2 +dx2
3

]
+

R2

ρ2+L(ρ)2

[
(1 + L′(ρ)2)dρ2 + ρ2dΩ2

3

]
. (2.2)

The D7-brane probe is described by the DBI action:

SDBI = −Nfµ7

∫
M8

d8ξe−Φ
[
−det(Gab +Bab + 2πα′Fab)

]1/2
. (2.3)

Here µ7 = [(2π)7α′4]−1 is the D7-brane tension, Gab and Bab are the induced metric
and B-field on the D7-brane’s world volume, while Fab is its world-volume gauge field.
A simple way to introduce a magnetic field is to consider a pure gauge B-field along the
x2, x3 directions:

B(2) = Hdx2 ∧ dx3 . (2.4)

Since Bab and Fab appear on equal footing in the DBI action, the introduction of such a
B-field is equivalent to introducing an external magnetic field of magnitude H/(2πα′) to
the dual gauge theory.

Though the full solution of the embedding can only be calculated numerically, the
large ρ behaviour (equivalently the ultraviolet (UV) regime in the gauge theory language)
can be extracted analytically:

L(ρ) = m+
c

ρ2
+ · · · . (2.5)

As discussed in ref. [16], the parameters m (the asymptotic separation of the D7- and D3-
branes) and c (the degree of bending of the D7-brane in the large ρ region) are related to
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Figure 1. Parametric plot of c̃ against m̃ for fundamental matter in the presence of an external
magnetic field. The lower (black) line represents the curve 1/m̃, fitting the large m̃ behavior. It
is also evident that for the outer branch of the spiral, for m̃ = 0 the condensate, 〈ψ̄ψ〉 is non-zero.
The corresponding value of the condensate is c̃cr = 0.226.

the bare quark mass mq = m/2πα′ and the fermionic condensate 〈ψ̄ψ〉 ∝ −c respectively.
It should be noted that the boundary behavior of L(r) really plays the role of source
and vacuum expectation value (vev) for the full N = 2 hypermultiplet of operators. In
the present case, where supersymmetry is broken by the gauge field configuration, we are
only interested in the fermionic bilinears and this will refer only to quarks, and not their
supersymmetric counterparts.

At this point it is convenient to introduce dimensionless parameters c̃ = c/R3H3/2

and m̃ = m/R
√
H. By performing a numerical shooting method from the infrared while

varying the small ρ boundary value, L(ρ → 0) = LIR, we recover the parametric plot
presented in figure 1, the main result explored in ref. [5].

The lower (black) curve corresponds to the analytic behavior of c̃(m̃) = 1/m̃ for
large m̃. The most important observation is that at m̃ = 0 there is a non-zero
fermionic condensate:

〈ψ̄ψ〉 = −
NfNc

(2πα′)3λ
c = −

NfNcc̃cr

(2π2)3/4λ1/4

(
H

2πα′

)3/2

. (2.6)

Where λ = g2
YMNc is the ’t Hooft coupling and c̃cr ≈ 0.226 is a numerical constant

corresponding to the y-intercept of the outer spiral from figure 1. Equation (2.6) is telling
us that the theory has developed a negative condensate that scales as

(
H

2πα′

)3/2. This is
not surprising, since the theory is conformal in the absence of the scale introduced by the
external magnetic field. The energy scale controlled by the magnetic field,

(
H

2πα′

)1/2, leads
to an energy density proportional to

(
H

2πα′

)2. In order to lower the energy, the theory
responds to the magnetic field by developing a negative fermionic condensate.

Another interesting feature of the theory is the discrete-self-similar structure of the
equation of state (c̃ vs. m̃) in the vicinity of the trivial m̃ = 0 embedding, namely the
origin of the plot from figure 1 presented in figure 2.
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Figure 2. A magnification of figure 1 shows the spiral behavior near the origin of the (−c̃, m̃)-plane.
The second (left) spiral arm represents the (m̃,−c̃)→ (−m̃, c̃) symmetry of the theory.

This double logarithmic structure has been analyzed in ref. [12], where a study of
the meson spectrum revealed that only the outer branch of the spiral is tachyon free and
corresponds to a stable phase having spontaneously broken chiral symmetry. In section 3 of
this paper we will show that an identical structure is also present for the D3/D5 system and
in section 4 we will demonstrate that this structure is a universal feature of the magnetic
catalysis of mass generation for gauge theories holographically dual to Dp/Dq intersections.

A further result of refs. [5, 12, 13] was the detailed analysis of the light meson spectrum
of the theory. In ref. [5] it was shown that the introduction of an external magnetic field
breaks the degeneracy of the spectrum studied in ref. [15]. This manifests itself as Zeeman
splitting of the energy levels. In the limit of zero quark mass, the study also revealed
the existence of a massless “η′ meson” corresponding to the spontaneously broken U(1)R
symmetry. In the next subsection we will revisit the study of the meson spectrum of the
theory and provide an analytic proof of the Gell-Mann–Oakes–Renner relation [23]:

M2
π = −2〈ψ̄ψ〉

f2
π

mq , (2.7)

in the spirit of the analysis performed in ref. [16].

2.2 The Gell-Mann–Oakes–Renner relation — an analytic derivation

In order to study the light meson spectrum of the theory one needs to consider the quadratic
fluctuations of the D7-brane embedding and study the corresponding normal modes [15].
Technically one should consider the full supergravity action for the D7-branes:

Stot = SDBI + SWZ , (2.8)
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where SDBI is given by equation (2.3) and the relevant part of the Wess-Zumino term is
given by [5]:

SWZ =
(2πα′)2

2
µ7

∫
F(2) ∧ F(2) ∧ C(4) + (2πα′)µ7

∫
F(2) ∧B(2) ∧ P̃

[
C(4)

]
, (2.9)

The next step is to consider fluctuations of the D7-brane in the transverse R2:

L = L0(ρ) + 2πα′δL ; φ = 2πα′Φ , (2.10)

and expand equation (2.8) to second order in α′. Note that with such an expansion we
should also consider fluctuations of the U(1) gauge field on the D7-brane. As demonstrated
in refs. [5, 19] the effect of the magnetic field will be to mix the equations of motion for the
scalar and vector fluctuations. In particular Φ couples to the A0 and A1 components of the
gauge field, while δL couples to the A2 and A3 components. The rest of the components
of the vector field decouple and can be consistently set to zero. This splitting of the meson
spectrum is a manifestation of the broken Lorentz symmetry. Indeed the external magnetic
field breaks the SO(1, 3) Lorentz symmetry down to SO(1, 1) × SO(2) corresponding to
boosts in the x0, x1 plane and rotations in the x2, x3 plane. Since the massless “pion” that
we are interested in corresponds to fluctuations along φ, we will excite only the Φ, A0, A1

fields. The relevant terms of the expansion are [5]:

Lφφ = −(2πα′)2µ7

gs

1
2

√
|gS3 |

gR2L2
0

ρ2 + L2
0

Sab∂aΦ∂bΦ ,

LΦA = −(2πα′)2µ7

gs

√
|gS3 |H∂ρKΦF01 ,

LAA = −(2πα′)2µ7

gs

√
|gS3 |

1
4
gSaa

′
Sbb
′
FabFa′b′ , (2.11)

where:

∣∣∣∣∣∣Sab∣∣∣∣∣∣ = diag
{
−G−1

11 , G
−1
11 ,

G11

G2
11 +H2

,
G11

G2
11 +H2

, G−1
ρρ , G

−1
ψψ, G

−1
αα, G

−1
ββ

}
, (2.12)

g(ρ) = ρ3
√

1 + L0
′2

√
1 +

R4H2

(ρ2 + L2
0)2

; K(ρ) =
R4ρ4

(ρ2 + L2
0)2

;
√
|gS3 | = sinψ cosψ .

Here L0(ρ) corresponds to the classical embedding of the D7-brane and Gab are the
components of the background metric equation (2.1).

The equations of motions for Φ and F01 are calculated from the quadratic action,
resulting in:

1
g(ρ)

∂ρ

(
g(ρ)L2

0∂ρΦ
1 + L′20

)
+
L2

0∆Ω3Φ
ρ2

+
R4L2

0

(ρ2 + L2
0)2

�̃Φ− H∂ρK

g(ρ)
F01 = 0 ,

1
g(ρ)

∂ρ

(
g(ρ)∂ρF01

1 + L′20

)
+

∆Ω3F01

ρ2
+

R4

(ρ2 + L2
0)2

�̃F01 −
H∂ρK

g(ρ)
(−∂2

0 + ∂2
1)Φ = 0 , (2.13)

– 7 –
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where F01 = ∂0A1 − ∂1A0 and the gauge constraint −∂0A0 + ∂1A1 = 0 is imposed (note
that this is the usual Lorentz gauge, corresponding to the unbroken SO(1, 1)) and we
have defined:

�̃ = −∂2
0 + ∂2

1 +
∂2

2 + ∂2
3

1 + R4H2

(ρ2+L2
0)2

. (2.14)

Once again the broken Lorentz symmetry is manifest in equation (2.14). The definition
of the spectrum is now a subtle issue in the presence of the broken space-time symmetry. We
will define the spectrum as the energy of a particle as measured in its rest frame. In fact be-
cause we retain the SO(1, 1) symmetry we may consider fluctuations propagating in the x1

direction. Since we are interested in describing the lowest lying modes (“pions” in particu-
lar) we will focus on modes that have no S3 dependence. Therefore we consider the ansätze:

Φ = ei(k0x
0+k1x1)h(ρ); F01 = ei(k0x

0+k1x1)f(ρ) , (2.15)

and define:
M2 = k2

0 − k2
1 . (2.16)

The equations (2.13) simplify to:

1
g
∂ρ

(
gL2

0

1 + L′20
∂ρh

)
+

R4L2
0

(ρ2 + L2
0)2

M2h− H∂ρK

g
f = 0 ,

1
g
∂ρ

(
g

1 + L′20
∂ρf

)
+

R4

(ρ2 + L2
0)2

M2f − M2H∂ρK

g
h = 0 . (2.17)

Note that for large bare masses m (and correspondingly large values of L) the term pro-
portional to the magnetic field is suppressed and the meson spectrum should approximate
to the result for the pure AdS5×S5 space-time case studied in ref. [15], where the authors
obtained the following relation:

Mn =
2m
R2

√
(n+ 1)(n+ 3) , (2.18)

between the eigenvalue of the nth excited state ωn and the bare mass m. If one imposes
the boundary conditions:

h(ε) = 1; h′(ε) = 0; f(ε) = 1; f ′(ε) = 0 , (2.19)

the coupled system of differential equations can be solved numerically. Then by requiring
the functions h(ρ) and f(ρ) to be regular at infinity one can quantize the spectrum of
the fluctuations. It is also convenient to define the following dimensionless parameter
M̃ = MR/

√
H. The resulting plot for the first three excited states is presented in figure 3.

There is Zeeman splitting of the states due to the magnetic field. (In the absence of
the field there are three straight lines emanating from the origin; these are split to form
six curves.) Also, at zero bare quark mass there is indeed a massless Goldstone mode,
appearing at the end of the lowest curve. Furthermore the plot in figure 4 shows that
for small bare quark mass one can observe a characteristic M̃ ∝

√
m̃ dependence. In the

– 8 –
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n=3

1 2 3 4
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15
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M
�

Figure 3. There is Zeeman splitting of the states due to the magnetic field. In the absence of the
field there are three straight lines emanating from the origin; these are split to form six curves. At
zero bare quark mass (the end of the lowest curve) there is indeed a massless Goldstone mode. The
straight lines correspond to the asymptotic AdS results.

0.02 0.04 0.06 0.08 0.10
m�

0.05

0.10

0.15

0.20

0.25
M
�

M
�

=0.64 m� +0.097m� +1.17m� 3�2

Figure 4. There is a characteristic M̃ ∝
√
m̃ behavior at small bare quark mass.

next section we shall provide an analytic proof of that relation and obtain an integral
expression for the numerical coefficient 0.64 presented above the plot in figure 4.

In the following section we shall demonstrate that for small bare quark mass, mq =
m/2πα′, the spectrum exhibits the characteristic M2 ∝ m dependence. Once we have
illustrated that the functional dependence is correct we will show that the constant of
proportionality is also that expected from the GMOR relation. Furthermore we shall
generalize the ansätze (2.15) to consider fluctuations depending on both the momentum
along the magnetic field ~k|| = (k1, 0, 0) and the transverse momentum ~k⊥ = (0, k2, k3):

Φ = ei(ωt+
~k.~x)h(ρ) ; F01 = ei(ωt+

~k.~x)f(ρ) . (2.20)

– 9 –



J
H
E
P
0
8
(
2
0
0
9
)
0
1
3

We shall also show that for small ω = k0 and |~k| the following dispersion relation holds:

ω(~k)2 = M2 + ~k2
|| + γ~k2

⊥ ; ω = k0 ; ~k|| = (k1, 0, 0) ; ~k⊥ = (0, k2, k3) , (2.21)

where γ is a constant that we shall determine.

2.2.1 The M2 ∝ m dependence

Using an approach similar to the one employed in ref. [16] we define:

Ψ2 =
gL2

0

1 + L′20
; ν = R4 1 + L′20

(ρ2 + L2
0)2

; ν̃ = R4 1 + L′20
(ρ2 + L2

0)2

1
1 + R4H2

(ρ2+L2
0)2

,

Ψ1 = Ψ/L0 ; ψ = hΨ ; ψ1 = fΨ1 . (2.22)

The equations of motions (2.13) can then be written in the compact form:

ψ̈ − Ψ̈
Ψ
ψ = −

(
ω2 − ~k2

||

)
νψ + ~k2

⊥ν̃ψ +
H∂ρK

ΨΨ1
ψ1 , (2.23)

ψ̈1 −
Ψ̈1

Ψ1
ψ1 = −

(
ω2 − ~k2

||

)
νψ1 + ~k2

⊥ν̃ψ1 +
H∂ρK

ΨΨ1

(
ω2 − ~k2

||

)
ψ .

Let us remind the reader that for large ρ, L0(ρ) has the behavior:

L0 ∝ m+
c

ρ2
+ · · · , (2.24)

Let us denote by L̄0 the classical embedding corresponding to (m = 0, c = ccr). It is
relatively easy to verify that at m = 0,~k⊥ = ~0 and correspondingly M2 = ω2 − ~k2

|| = 0
the choice:

ψ = Ψ̄ ≡ Ψ|L̄0
; ψ1 = 0 , (2.25)

is a solution to the system (2.23). Next we consider embeddings corresponding to a small
bare quark mass δm. This will correspond to small nonzero values of M2 and ~k2

⊥. It is
then natural to consider the following variations:

ψ = Ψ̄ + δψ ,

ψ1 = 0 + δψ1 , (2.26)

where δψ and δψ1 are of order M2. Note that M corresponds to the mass of the ground
state at mq = δm/2πα′ and we are assuming that the variations of the wave functions δψ
and δψ1 are infinitesimal for infinitesimal mq. After expanding in equation (2.23) we get
the following equations of motion:

δψ̈ −
¨̄Ψ
Ψ̄
δψ − δ

(
Ψ̈
Ψ

)
Ψ̄ = −

(
ω2 − ~k2

||

)
ν̄Ψ̄ + ~k2

⊥ ¯̃vΨ̄ +
H∂ρK

Ψ̄1Ψ̄
δψ1 ,

Ψ̄1δψ̈1 − ¨̄Ψ1δψ1 = H∂ρK
(
ω2 − k2

||

)
, (2.27)
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where ν̄ = ν|L̄0
. The second equation in (2.27) can be integrated to give:

Ψ̄1δψ̇1 − ˙̄Ψ1δψ1 = HK
(
ω2 − k2

||

)
+ constant . (2.28)

From the boundary conditions that K|ρ=0 = 0 and Ψ̄1(0) = 0, ˙̄Ψ1(0) = 0 we see that the
constant of integration is zero and arrive at:

∂ρ

(
δψ1

Ψ̄1

)
=
HK

(
ω2 − k2

||

)
Ψ̄2

1

. (2.29)

Next we multiply the first equation in (2.27) by Ψ̄ and integrate along ρ to obtain:

(
ω2−~k2

||

)∞∫
0

dρν̄Ψ̄2−~k2
⊥

∞∫
0

dρ¯̃νΨ̄2 = −
∞∫

0

(
Ψ̄δψ̈ − ¨̄Ψδψ

)
dρ+

∞∫
0

Ψ̄2δ

(
Ψ̈
Ψ

)
dρ+ (2.30)

+H

∞∫
0

∂ρKδψ1

Ψ̄1
dρ

=−
(

Ψ̄δψ̇− ˙̄Ψδψ
)∣∣∣∞

0
+
(

Ψ̄δΨ̇− ˙̄ΨδΨ
)∣∣∣∞

0
−H

∞∫
0

K∂ρ

(
δψ1

Ψ̄1

)
dρ ,

where the last term on the right-hand side of equation (2.30) has been integrated by
parts using the fact that δψ1 should be regular at infinity. From the definition of Ψ̄ it
follows that Ψ̄ ∝ ρ3/2L0(0) as ρ → 0 and Ψ̄ ∝ c/ρ1/2 as ρ → ∞. This together with the
requirement that ψ1 is regular at ρ = 0 and vanishes at infinity, suggests that the first term
on the right-hand side of equation (2.30) vanishes. For the next term, we use the fact that:

δΨ = ρ3/2δ

1 + H2R4

(ρ2+L2
0)2

1 + L′20

1/4

L0 + ρ3/2

1 + H2R4

(ρ2+L2
0)2

1 + L′20

1/4

δL0 , (2.31)

and therefore obtain:

δΨ|0 = 0; δΨ̇|0 = 0 ,

δΨ|∞ ∝ ρ3/2δm ; δΨ̇|∞ ∝
3
2
√
ρδm . (2.32)

The second term in equation (2.30) then becomes:

(Ψ̄δΨ̇− ˙̄ΨδΨ)
∣∣∣∞
0

= 2cδm . (2.33)

Finally using the equality in equation (2.29) we arrive at the result:

(
ω2 − ~k2

||

) ∞∫
0

dρ

{
ν̄Ψ̄2 +

H2K̄2

Ψ̄2
1

}
− ~k2
⊥

∞∫
0

dρ¯̃νΨ̄2 = 2cδm . (2.34)
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Now we define:

γ =

 ∞∫
0

dρ¯̃νΨ̄2

 /

 ∞∫
0

dρ

{
ν̄Ψ̄2 +

H2K̄2

Ψ̄2
1

} , (2.35)

and solve for M2 from equation (2.21) to obtain:

M2

∞∫
0

dρ

{
ν̄Ψ̄2 +

H2K̄2

Ψ̄2
1

}
= 2cδm . (2.36)

Equation (2.36) suggests that the mass of the “pion” associated to the softly broken global
U(1) symmetry satisfies the Gell-Mann–Oakes–Renner relation [23]:

M2
π = −2〈ψ̄ψ〉

f2
π

mq . (2.37)

In order to prove equation (2.37) we need to evaluate the effective coupling of the “pion”
f2
π . Noting that δm ∝ mq and c ∝ −〈ψ̄ψ〉, we conclude that:

f2
π ∝

∞∫
0

dρ

{
ν̄Ψ̄2 +

H2K̄2

Ψ̄2
1

}
. (2.38)

At this point is useful to verify the consistency of our analysis by comparing the coefficient
in equation (2.36) to the numerically determined coefficient 0.64 from the plot in figure 4.
Indeed from equation (2.36) we obtain:

M̃/
√
m̃ =

 1
2c̃cr

∞∫
0

dρ̃

¯̂ν ¯̂Ψ
2

+
¯̂
K

2

¯̂Ψ
2

1


−1/2

≈ 0.655 , (2.39)

where we have defined the dimensionless quantities:

ν̂ = H2ν; Ψ̂2 = Ψ2/R5H5/2; Ψ̂2
1 = Ψ2

1/R
3H3/2; K̂ = K/R4 . (2.40)

There is excellent agreement with the fit from figure 4.
Next we will obtain an effective four dimensional action for the “pion” and from this

derive an exact expression for f2
π .

2.2.2 Effective chiral action and f2
π

In this section we will reduce the eight dimensional world-volume action for the quadratic
fluctuations of the D7-brane to an effective action for the massless “pion” associated to
the spontaneously broken global U(1) symmetry. Note that our effective action should be
describing a single “pion” mode, while the 8D action given by equation (2.11) describes
the dynamics of two independent degrees of freedom, namely Φ and F01 coupled by the
magnetic B-field via the second equation in equation (2.11). As rigid rotations along φ

correspond to chiral rotations, (the asymptotic value of φ at infinity corresponds to the
phase of the condensate in the dual gauge theory) the spectrum of Φ at zero quark mass
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contains the Goldstone mode that we are interested in. This is why we first integrate out
the gauge field components A0 and A1 and then dimensionally reduce to four dimensions.

Furthermore as mentioned earlier, because of the magnetic field the SO(1, 3) Lorentz
symmetry is broken down to SO(1, 1)×SO(2) symmetry. This is why in order to extract the
value of f2

π we consider excitations of Φ depending only on the x0, x1 directions and read off
the coefficient in front of the kinetic term. The resulting on-shell effective action for Φ is:

Seff = −N
∫
d4x

[
−(∂0Φ)2 + (∂1Φ)2

]
, (2.41)

where N is given by:

N = (2πα′)2µ7

gs
Nfπ

2

∞∫
0

dρ

{
ν̄Ψ̄2 +

H2K̄2

Ψ̄2
1

}
. (2.42)

We refer the reader to appendix A for a detailed derivation of the 4D effective action Seff .
We have defined Φ via φ = (2πα′)Φ, where φ corresponds to rotations in the transverse

R2 plane and is the angle of chiral rotation in the dual gauge theory. The chiral Lagrangian
is then given by:

Seff = −(2πα′)2 f
2
π

4

∫
d4x∂µΦ∂µΦ ; µ = 0 or 1 , (2.43)

and therefore:

f2
π = Nf4π2µ7

gs

∞∫
0

dρ

(
ν̄Ψ̄2 +

H2K2

Ψ̄2
1

)
. (2.44)

The D7-brane charge in equation (2.44) is given by µ7 = [(2π)7α′4]−1 and the overall
prefactor in equation (2.44) can be written as NfNc/2(2πα′)4λ. Now, recalling the expres-
sions for the fermionic condensate, equation (2.6), and the bare quark mass, mq = m/2πα′,
one can easily verify that equation (2.36) is indeed the Gell-Mann–Oakes–Renner relation:

M2
π = −2〈ψ̄ψ〉

f2
π

mq . (2.45)

It turns out that for small momenta ~k||,~k⊥ and small mass M2
π one can obtain the

following more general effective 4D action (see appendix A for a detailed derivation):

Seff = −N
∫
d4x

{[
−(∂0Φ̃)2 + (∂1Φ̃)2

]
+ γ

[
(∂2Φ̃)2 + (∂3Φ̃)2

]
− 2〈ψ̄ψ〉

f2
π

mqΦ̃2

}
+ · · · ,

(2.46)
where γ is defined in equation (A.14). As one can see, the action (2.46) is the most general
quadratic action consistent with the SO(1, 1)× SO(2) symmetry and suggests that pseudo
Goldstone bosons satisfy the dispersion relation (2.21).
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3 Mass generation in the D3/D5 system

In this section we provide a holographic description of the magnetic catalysis of chiral
symmetry breaking in 1 + 3 dimensional SU(Nc) N = 4 supersymmetric Yang-Mills theory
coupled to Nf N = 2 fundamental hypermultiplets confined to a 1 + 2 dimensional defect.
Recently this theory received a great deal of attention and emphasis has been made of the
potential application of this brane configuration in describing qualitative properties of 1+2
dimensional condensed matter systems (see for example refs. [27–29]). In this section we
will study the effect of an external magnetic field on the theory and demonstrate that the
system develops a dynamically generated mass and negative fermionic condensate leading
to a spontaneous breaking of a global SO(3) symmetry down to a U(1) symmetry. On the
gravity side this symmetry corresponds to the rotational symmetry in the transverse R3.
Naively there should be two massless Goldstone bosons corresponding to the generators of
the coset SO(3)/U(1). As we will show the 1+2 dimensional nature of the defect theory
leads to a coupling of the transverse scalars corresponding to the coset generators and as
a result there is only a single Goldstone mode. Furthermore the characteristic Mπ ∝

√
m

Gell-Mann–Oakes–Renner relation is modified to a linear Mπ ∝ m behavior. It turns out
that these features can be understood from a low energy effective theory point of view.
Indeed in 1 + 2 dimensions the effect of the magnetic field is to break the SO(1, 2) Lorentz
symmetry down to SO(2) rotational symmetry and as a result the theory is non-relativistic.
A single time derivative chemical potential term is allowed (there is no boost symmetry)
and interestingly the supergravity action generates such a term through the Wess-Zumino
contribution of the D5-brane. It is this term that is responsible for the modified counting
rule of the number of Goldstone bosons [24] and leads to a quadratic dispersion relation
as well as to the modified linear Gell-Mann–Oakes–Renner relation. Another interesting
feature of the model is that to quadratic order the effective low energy action is the same
as the effective action describing spin waves in a ferromagnet [11] in an external magnetic
field. We comment briefly on the possible applications of this similarity.

3.1 Generalities

Let us consider the AdS5 × S5 supergravity background (2.1) and introduce the following
parameterization:

ds2 =
u2

R2

[
−dx2

0 + dx2
1 + dx2

2 + dx2
3

]
+
R2

u2

[
dr2 + r2dΩ2

2 + dl2 + l2dΩ̃2
2

]
, (3.1)

u2 = r2 + l2 ; dΩ2
2 = dα2 + cos2 αdβ2 ; dΩ̃2

2 = dψ2 + cos2 ψdφ2 .

We have split the transverse R6 to R3×R3 and introduced spherical coordinates r,Ω2 and
l, Ω̃2 in the first and second R3 planes respectively. Next we introduce a stack of probe Nf

D5-branes extended along the x0, x1, x2 directions, and filling the R3 part of the geometry
parameterized by r,Ω2. As mentioned above on the gauge theory side this corresponds
to introducing Nf fundamental N = 2 hypermultiplets confined on a 1 + 2 dimensional
defect. The asymptotic separation of the D3 and D5 –branes in the transverse R3 space
parameterized by l corresponds to the mass of the hypermultiplet. In the following we will

– 14 –



J
H
E
P
0
8
(
2
0
0
9
)
0
1
3

consider the following anzatz for a single D5-brane:

l = l(r) ; ψ = 0 ; φ = 0 . (3.2)

The asymptotic separation m = l(∞) is related to the bare mass of the fundamental
fields via mq = m/2πα′. If the D3 and D5 branes overlap, the fundamental fields in the
gauge theory are massless and the theory has a global SO(3) × SO(3) symmetry. Clearly
a non-trivial profile of the D5-brane l(r) in the transverse R3 would break the global
symmetry down to SO(3) × U(1), where U(1) is the little group in the transverse R3. If
the asymptotic position of the D5-brane vanishes (m = 0) this would correspond to a
spontaneous symmetry breaking, the non-zero separation l(0) on the other hand would
naturally be interpreted as the dynamically generated mass of the theory.

Note that the D3/D5 intersection is T-dual to the D3/D7 intersection from the previous
section and thus the system is supersymmetric. The D3 and D5 –branes are BPS objects
and there is no attractive potential for the D5-brane, hence the D5-brane has a trivial
profile l ≡ const. However a non-zero magnetic field will break the supersymmetry and as
we are going to demonstrate, the D5-brane will feel an effective repulsive potential that will
lead to dynamical mass generation. In order to introduce a magnetic field perpendicular
to the plane of the defect, we consider a pure gauge B-field in the x1, x2 plane given by:

B = Hdx1 ∧ dx2 . (3.3)

This is equivalent to turning on a non-zero value for the 0, 1 component of the gauge field
on the D5-brane. The magnetic field introduced into the dual gauge theory in this way has
a magnitude H/2πα′. The D5-brane embedding is determined by the DBI action:

SDBI = −Nfµ5

∫
M6

d6ξe−Φ[−det(Gab +Bab + 2πα′Fab)]1/2 . (3.4)

Where Gab and Bab are the pull-back of the metric and the B-field respectively and Fab is
the gauge field on the D5-brane.

With the anzatz (3.2) the Lagrangian is given by:

L ∝ r2
√

1 + l′2

√
1 +

R4H2

(r2 + l2)2
. (3.5)

From this it is trivial to solve the equation of motion for l(r) numerically, imposing l(0) = lin
and l′(0) as initial conditions. Clearly, at large r the Lagrangian (3.5) asymptotes to that
at zero magnetic field and hence we have the asymptotic solution [25]:

l(r) = m+
c

r
+ · · · , (3.6)

where c ∝ 〈ψ̄ψ〉 the condensate of the fundamental fields.
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3.2 Spontaneous symmetry breaking

Before solving the equation of motion it is convenient to introduce dimensionless variables:

r̃ = r/R
√
H ; l̃ = l/R

√
H ; m̃ = m/R

√
H ; c̃ = c/R2H . (3.7)

The Lagrangian (3.5) can then be written as:

L ∝ r̃2

√
1 + l̃′2

√
1 +

1
(r̃2 + l̃2)2

. (3.8)

The corresponding equation of motion is:

∂r̃

 r̃2l′√
1 + l̃′2

√
1 + (r̃2 + l̃2)2

(r̃2 + l̃2)

 = −2
r̃2 l̃
√

1 + l̃′2

(r̃2 + l̃2)2

√
1 + (r̃2 + l̃2)2

. (3.9)

Before solving equation (3.9) it will be useful to extract the asymptotic behavior of c̃(m̃)
at large m̃. To this end we use that at large m̃ the separation l̃(r̃) ≈ m̃ = const. The
equation of motion then simplifies to:

∂r̃(r̃2 l̃′) = − 2r̃2m̃

(r̃2 + m̃2)3
, (3.10)

and hence:

r̃2 l̃′ = −2m̃

r̃∫
0

dr̃
r̃2

(r̃2 + m̃2)2
. (3.11)

Using the expansion (3.6) one can verify that:

lim
r̃→+∞

r̃2 l̃′ = c̃ = 2m̃

∞∫
0

dr̃
r̃2

(r̃2 + m̃2)3
=

π

8m̃2
. (3.12)

Equation (3.12) can thus be used as a check of the accuracy of our numerical results.
Indeed the numerically generated plot of −c̃ vs. m̃ is presented in figure 5. The most
important observation is that at zero bare mass m̃ the theory has developed a negative
condensate 〈ψ̄ψ〉 ∝ −c̃cr ≈ −0.59. It can also be seen that for large m̃ the numerically
generated plot is in good agreement with equation (3.12) represented by the lower (black)
curve. Another interesting feature of the equation of state is the spiral structure near the
origin of the parameter space analogous to the one presented in figure 2 for the case of the
D3/D7 system. We will come back to this in section 4 in more general terms, and show
that this feature is universal for the class of gauge theories dual to the Dp/Dq systems.

In order to show that the global SO(3) symmetry is indeed spontaneously broken we
need to study the free energy of the theory. Indeed the existence of the spiral structure
suggests that there is more than one phase at zero bare mass, corresponding to the different
y-intercepts of the −c̃ vs. m̃ plot. We will demonstrate below that the lowest positive
branch of the curve presented in figure 5 is the stable one.
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Figure 5. A plot of −c̃ vs. m̃. At zero bare mass m̃ = 0 the theory has developed a negative
condensate 〈ψ̄ψ〉 ∝ −c̃cr ≈ −0.59. For large m̃ there is excellent agreement with equation (3.12),
as represented by the lower (blue) curve.

Following ref. [25] we will identify the regularized wick rotated on-shell action of the
D5-brane with the free energy of the theory. Let us introduce a cut-off at infinity, rmax,
The wick rotated on-shell action is given by:

S = Nf
µ5

gs
4πV3R

3H3/2

r̃max∫
0

dr̃r̃2

√
1 + l̃′2

√
1 +

1
(r̃2 + l̃2)2

, (3.13)

where V3 =
∫
d3x and l̃(r̃) is the solution of equation (3.9). It is easy to verify, using

the expansion from equation (3.6), that the integral in equation (3.13) has the following
behavior at large r̃max:

r̃max∫
0

dr̃r̃2

√
1 + l̃′2

√
1 +

1
(r̃2 + l̃2)2

=
1
3
r3

max +O

(
1

rmax

)
. (3.14)

It is important that in these coordinates the divergent term is independent of the field l̃, it
is therefore possible to regularize the on-shell action by subtracting the free energy of the
l̃ ≡ 0 embedding. The resulting regularized expression for the free energy is:

F = Sreg = Nf
µ5

gs
4πV3R

3H3/2ĨD5 , (3.15)

where

ĨD5 =

∞∫
0

dr̃

[
r̃2

√
1 + l̃′2

√
1 +

1
(r̃2 + l̃2)2

−
√

1 + r̃4

]
. (3.16)

A plot of ĨD5 vs. |m̃| is presented in figure 6. The states from the lowest positive
branch in figure 6 have the lowest free energy and correspond to the stable phase of the
theory. Therefore there is a spontaneous breaking of the global SO(3) symmetry and the
theory at m̃ = 0 develops a negative condensate proportional to −c̃cr ≈ −0.59. Note that
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Figure 6. The states corresponding to the lowest positive branch of the plot in figure 5 have the
lowest free energy and thus correspond to the stable phase of the theory.

only the absolute value of m̃ corresponds to the bare mass of the fundamental fields. The
states with negative m̃ correspond to D5-brane embeddings that intercept the l̃ = 0 line
in the l̃ vs. r̃ plane and as seen from figure 6 are unstable. It is to be expected that the
meson spectrum of the theory in such a phase would contain tachyons based on an analogy
with the meson spectrum of the D3/D7 system studied in ref. [12]. Before we proceed
with the analysis of the meson spectrum of the theory let us write an expression for the
condensate of the theory 〈ψ̄ψ〉 ∝ −ccr = R2Hc̃cr at zero bare quark mass. The coefficient
of proportionality is given by [32]:

〈ψ̄ψ〉 = −8π2α′
µ5

gs
ccr = −16π3α′2

µ5

gs
c̃crR

2(H/2πα′) . (3.17)

Note that the condensate is proportional to the magnitude of the magnetic field H/2πα′.
In order to check the consistency of our numerical analysis and to calculate more accurately
the constant c̃cr we have calculated the value of ccr for a range of H having set R = 1. The
resulting plot is presented in figure 7. The solid (black) line corresponds to the linear fit
ccr ≈ 0.586H therefore we have c̃cr ≈ 0.586.

3.3 Meson spectrum and pseudo-Golstone bosons

In this section we will analyze the normal modes of the D5-brane. These describe fluc-
tuations of the spinor bilinear in the dual gauge theory and hence their spectrum is the
spectrum of the light meson-like excitations of the gauge theory. We focus our analysis on
the normal modes corresponding to the Goldstone bosons (which we label as pions here
for simplicity) of the spontaneously broken SO(3) symmetry and study their spectrum as
a function of the bare quark mass mq. Our study shows that the external magnetic field
splits the degeneracy of the meson spectrum and gives mass to one of the pions of the the-
ory. It also modifies the standard M2

π ∝ m GMOR relation for the remaining Goldstone
mode to a linear relation Mπ ∝ m. We will show that these results are in accord with the
behavior expected from the effective chiral Lagrangian of the theory.

In order to study the light meson spectrum of the theory we look for the quadratic
fluctuations of the D5-brane embedding along the transverse directions parametrized by
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Figure 7. A plot of ccr vs. H for R = 1. The solid (black) line corresponds to the linear fit
ccr ≈ 0.586H.

l, ψ, φ. To this end we expand:

l = l̄ + 2πα′δl; ψ = 2πα′δψ; φ = 2πα′δφ , (3.18)

in the action (3.4) and leave only terms of order (2πα′)2. Note that fluctuations of the
U(1) gauge field Fαβ of the D5-brane will also contribute to the expansion. There is also
an additional contribution from the Wess-Zumino term of the D5-brane’s action:

SWZ = Nfµ5

∫
M6

∑
p

[
Cp ∧ eF

]
; F = B + 2πα′F . (3.19)

For the anzatz that we are considering, the relevant term is:

SWZ = Nfµ5

∫
M6

B ∧ P
[
C̃4

]
, (3.20)

where P [C̃4] is the pull-back of the magnetic dual, C̃4, to the background C4 R-R form.
For the particular parameterization of S5 considered here, it is given by:

C̃4 =
1
gs

4r2l2

(r2 + l2)3
R4 sinψ(ldr − rdl) ∧ dΩ2 ∧ dφ . (3.21)

After some long but straightforward calculations we get the following action for the
quadratic fluctuations along l:

L(2)
ll ∝

1
2

√
−EGll

Sαβ

1 + l′2
∂αδl∂βδl +

1
2

[
∂2
l

√
−E − d

dr

(
l′

1 + l′2
∂l
√
−E
)]

δl2 ,

L(2)
lF ∝

√
−E

1 + l′2
(∂lJ12 − ∂rJ12l′)F21δl ,

L(2)
FF ∝

1
4

√
−ESαβSγλFβγFαλ , (3.22)
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and along φ and ψ:

L(2)
ψψ,φφ ∝

1
2

√
−ESαβ(Gψψ∂αδψ∂βδψ +Gφφ∂αδφ∂βδφ) ,

L(2)
ψφ ∝ (cosα)PHδψ∂0δφ . (3.23)

Here Eαβ is the pull-back of the generalized metric on the classical D5-brane embedding:

Eαβ = ∂αX̄
µ∂βX̄

ν(Gµν +Bµν) , (3.24)

and we have defined Sαβ and Jαβ as the symmetric and anti-symmetric elements of the
inverse generalized metric Eαβ:

Eαβ = Sαβ + Jαβ . (3.25)

The determinant E and the function K = P are given by:

√
−E = (cosα)r2

√
1 + l′2

√
1 +

R4H2

(r2 + l2)2
≡ g(r) cosα , (3.26)

P =
4R4r2l2

(r2 + l2)3
(rl′ − l) . (3.27)

As one can see, the fluctuations along ψ and φ decouple from the fluctuations along l and
the fluctuations of the gauge field Aα. Since we are interested in the pseudo-Goldstone
modes of the dual theory we will focus on the fluctuations along ψ and φ. The equations
of motion derived from the quadratic action (3.23) are the following:

∂r

(
g(r)l2

1 + l′2
∂rδψ

)
+
g(r)R4l2

(r2 + l2)2
�̃δψ +

g(r)R4l2r2

(r2 + l2)2
∆(2)δψ − PH∂0δφ = 0 ,

∂r

(
g(r)l2

1 + l′2
∂rδφ

)
+
g(r)R4l2

(r2 + l2)2
�̃δφ+

g(r)R4l2r2

(r2 + l2)2
∆(2)δφ+ PH∂0δψ = 0 , (3.28)

where

�̃ = −∂2
0 +

∂2
1 + ∂2

2

1 + R4H2

(r2+l2)2

. (3.29)

Note that the background magnetic field breaks the SO(1, 2) Lorentz symmetry to
SO(2), which manifests itself in the modified laplacian (3.29). Next we consider a
plane-wave ansatz:

δφ = ei(ωt−
~k̇~x)η1(r); δψ = ei(ωt−

~k̇~x)η2(r) , (3.30)

now using the anzatz (3.30) we get:

∂r

(
g(r)l2

1 + l′2
η′1

)
+
g(r)R4l2

(r2 + l2)2

(
ω2 −

~k2

1 + R4H2

(r2+l2)2

)
η1 − iωPHη2 = 0 ,

∂r

(
g(r)l2

1 + l′2
η′2

)
+
g(r)R4l2

(r2 + l2)2

(
ω2 −

~k2

1 + R4H2

(r2+l2)2

)
η2 + iωPHη1 = 0 . (3.31)
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The equations of motion in (3.31) can be decoupled by the definition η± = η1 ± iη2. The
result is:

∂r

(
g(r)l2

1 + l′2
η′+

)
+
g(r)R4l2

(r2 + l2)2

(
ω2 −

~k2

1 + R4H2

(r2+l2)2

)
η+ − ωPHη+ = 0 ,

∂r

(
g(r)l2

1 + l′2
η′−

)
+
g(r)R4l2

(r2 + l2)2

(
ω2 −

~k2

1 + R4H2

(r2+l2)2

)
η− + ωPHη− = 0 . (3.32)

Because of the broken Lorentz symmetry, the 1 + 2 dimensional mass M2 = ω2 − ~k2

depends on the choice of frame. We can define the spectrum of excitations as the rest
energy (consider the frame with ~k = 0) and as we shall observe, the spectrum is discrete.
Furthermore just as in the D3/D7 case there is a Zeeman splitting of the spectrum due
to the external magnetic field. Interestingly, at low energy the splitting is breaking the
degeneracy of the lowest energy state and as a result there is only one pseudo-Goldstone
boson. Note that this is not in contradiction with the Goldstone theorem because there is
no Lorentz symmetry. This opens the possibility of having two types of Goldstone modes:
type I and type II satisfying odd and even dispersion relations correspondingly. In this case
there is a modified counting rule (ref. [24], see also ref. [30]) which states that the number
of GBs of type I plus twice the number of GBs of type II is greater than or equal to the
number of broken generators. As we are going to show below the single Goldstone mode
that we see satisfies a quadratic dispersion relation (hence is type II) and the modified
counting rule is not violated. Note also that for large bare masses m (and correspondingly
large values of l) the term proportional to the magnetic field is suppressed and the meson
spectrum should approximate to the result for the pure AdS5×S5 space-time case studied
in refs. [20, 21], where the authors obtained the following relation:

ωn =
2m
R2

√
(n+ 1/2)(n+ 3/2) , (3.33)

between the eigenvalue of the nth excited state ωn and the bare mass m.
In order to obtain the meson spectrum, we numerically solve the equations of mo-

tion (3.32) in the rest frame (~k = 0). The quantization condition for the spectrum comes
from imposing regularity at infinity. More precisely we require that η± ∼ 1/r at infinity
(r → ∞). The results are summarized in figure 8. Just as in the D3/D7 case we have
defined the dimensionless quantities m̃ = m/R

√
H and ω̃ = ωR/

√
H. As one can see

from figure 8, for large m̃ the spectrum asymptotes to that of pure AdS5 × S5, given by
equation (3.33). The Zeeman splitting of the spectrum is also evident. It is interesting
that as a result of the splitting of the ground state there is only a single pseudo-Goldstone
mode. Furthermore, as can be seen from figure 9, for small bare masses instead of the
usual Gell-Mann–Oakes–Renner relation we obtain a linear dependence ω̃ ∼ m̃. As we will
show in the next subsection the slope is given by the relation:

ω̃ =
4c̃cr

π
m̃ ≈ 0.736m̃ . (3.34)
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Figure 8. The meson spectrum of the first three excited states is plotted. There is Zeeman
splitting of the spectrum and the existence of a mass gap at m̃ = 0 as well as a single Goldstone
boson mode. For large m̃ the spectrum asymptotes to that of zero magnetic field given by
equation (3.33) (straight lines).

0.01 0.02 0.03 0.04 0.05 0.06
m�
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0.03

0.04

Ω
�

Figure 9. Plot of the spectrum of the ground state from figure 8 for small bare masses. The dashed
line corresponds to the linear behavior from equation (3.34).

It is also interesting to study the dispersion relation of the Goldstone mode. Since
we have broken Lorentz symmetry and observe only one pseudo-Goldstone mode (which is
only half the number of broken generators) we anticipate a quadratic dispersion relation
(see refs. [30] and [31] for discussion).

In order to obtain the dispersion relation of the Goldstone mode we numerically solve
equations (3.32) at very small bare mass m̃ ≈ 0.0007 and for a range of small momenta
~̃k = ~kR/

√
H. The result is presented in figure 10. There is indeed a quadratic dispersion
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Figure 10. Plot of the dispersion relation of the pseudo-Goldstone mode for m̃ ≈ 0.0007. The
parabolic fit corresponds to equation (3.37).

relation. As we are going to show, the dispersion relation is given by:

ω̃ = γ~̃k
2

+
4
π
c̃crm̃ , (3.35)

where:

γ =
4
π

∞∫
0

dr̃
r̃2 l̃2

√
1 + l̃′2

(r̃2 + l̃2)
√

1 + (r̃2 + l̃2)2

. (3.36)

For m̃ ≈ 0.0007 the relation (3.35) is given by:

ω̃ ≈ 0.232~̃k
2

+ 0.000515 , (3.37)

and is represented by the fitted curve in figure 10.
In the next subsections we will obtain the effective 1 + 2 dimensional chiral action

describing the pseudo-Goldstone mode and argue that in the limit ω → 0 it is identical to
the action describing magnon excitations in a ferromagnet [11]. Furthermore we will show
that the observed dispersion relation (3.35) is in agreement with the dispersion relation
of magnons in an external magnetic field. Note that in order to make the analogy with a
ferromagnet, one needs to identify the bare mass with the external magnetic field acting
on the ferromagnet. The reason is that these both correspond to the small parameter that
explicitly breaks the global symmetry.

3.3.1 Low energy dispersion relation

In order to obtain the dispersion relation for the pseudo-Goldstone mode we will analyze
the first equation in (3.32) in the spirit of the analysis performed in section 2.2.1 for the
D3/D7 system. To begin with let us consider the limit of small ω thus leaving only the
linear potential term in ω̃. In view of the observed quadratic dispersion relation (3.35) we
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will also keep the ~k2 term in equation (3.32).

∂r

(
g(r)l2

1 + l′2
η′+

)
−
(
ωPH +

g(r)R4l2

(r2 + l2)2 +R4H2
~k2

)
η+ = 0 . (3.38)

It is convenient to define the following variables:

Θ2 =
g(r)l2

1 + l′2
; ξ = η+Θ . (3.39)

Then equation (3.38) can be written as:

ξ̈ − Θ̈
Θ
ξ −

(
ωPH +

g(r)R4l2

(r2 + l2)2 +R4H2
~k2

)
ξ

Θ2
= 0 . (3.40)

Where the overdots represent derivatives with respect to r. Now if we take the limit m→ 0
we have that ω → 0 and k → 0 and obtain that:

ξ = Θ|ω=0 ≡ Θ̄ , (3.41)

is a solution to equation (3.40). Our next step is to consider small m and expand:

ξ = Θ̄ + δξ ; Θ = Θ̄ + δΘ , (3.42)

where the variations δξ and δΘ are vanishing in the m → 0 limit. Then, to leading order
in m (keeping in mind that ω ∼ m and ~k2 ∼ m) we obtain:

δξ̈ −
¨̄Θ
Θ̄
δξ − δ

(
Θ̈
Θ

)
Θ̄−

(
ωPH +

g(r)R4l2

(r2 + l2)2 +R4H2
~k2

)
1
Θ̄

= 0 . (3.43)

Now we multiply equation (3.43) by Θ̄ and integrate along r. The result is:

(Θ̄δξ̇ − ˙̄Θδξ)
∣∣∣∞
0
− (Θ̄δΘ̇− ˙̄ΘδΘ)

∣∣∣∞
0
− ωH

∞∫
0

drP (r)− π

4
R5
√
Hγ~k2 = 0 . (3.44)

Using the definitions of Θ, P (r) and ξ and requiring regularity at infinity for η+, one can
show that the first term in equation (3.44) vanishes and that:

(Θ̄δΘ̇− ˙̄ΘδΘ)
∣∣∣∞
0

= cδm ;

∞∫
0

drP (r) = −R4π/4 , (3.45)

and hence using the previous definitions, m̃ = m/R
√
H, c̃ = c/R2H, ω̃ = ωR/

√
H and

~̃k = ~kR/
√
H, we obtain equation (3.35) which we duplicate below:

ω̃ = γ~̃k
2

+
4
π
c̃crm̃ . (3.46)

In the next subsection we will derive the effective 1 + 2 dimensional action for the pseudo-
Goldstone mode and show that to leading order it is in to one correspondence with
the effective action describing magnon excitations in a ferromagnet corresponding to the
SO(3) → SO(2) spontaneous symmetry breaking by spontaneous magnetization [11]. We
will relate the fermionic condensate c̃ to the spontaneous magnetization of the ferromagnet
and the bare mass to the external magnetic field and show that the dispersion relation (3.46)
is in exact agreement with that of magnons.
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3.3.2 Effective chiral Lagrangian

In order to obtain the 1 + 2 dimensional effective action describing the pseudo-Goldstone
mode we consider the 1 + 5 dimensional action (3.23) for a classical embedding in the
vicinity of the critical embedding, namely that embedding corresponding to a very small
bare mass m̃. Now let us consider the following ansätze for the fields δφ and δψ:

δφ =
ξ1(r)
Θ(r)

χ1(x) ; δψ =
ξ2(r)
Θ(r)

χ2(x) . (3.47)

Since we are close to the critical embedding we will consider the same expansion as in
equation (3.42):

ξi = Θ̄ + δξi , i = 1 or 2 ; Θ = Θ̄ + δΘ . (3.48)

By definition it follows that as m̃ → 0, δξi and δΘ vanish. Then to leading order we
have that:

∂rδφ =
1

Θ̄2
[(Θ̄δξ̇1 − ˙̄Θδξ1) + ( ˙̄ΘδΘ− Θ̄δΘ̇)]χ1(x) ; ∂µδφ = ∂µχ1(x) ; µ = 0, 1, 2 ,

(3.49)

∂rδψ =
1

Θ̄2
[(Θ̄δξ̇2 − ˙̄Θδξ2) + ( ˙̄ΘδΘ− Θ̄δΘ̇)]χ2t(x) ; ∂µδψ = ∂µχ2(x) ; µ = 0, 1, 2 .

Now we integrate equation (3.23) along r from 0,∞ and along the internal unit sphere
Ω̃2. The interesting term is the part of the kinetic term involving derivatives along r.
After integration by parts it boils down to a mass term for the 1 + 2 dimensional fields
χ1, χ2. Explicitly:∫

drdΩ̃2
1
2
g(r)l2

1 + l′2
∂rδφ∂rδφ = −

∫
drdΩ̃2

1
2
∂r

(
g(r)l2

1 + l′2
∂rδφ

)
δφ = (3.50)

= −4π
[
(Θ̄δξ̇1 − ˙̄Θδξ1) + ( ˙̄ΘδΘ− Θ̄δΘ̇)

] ∣∣∣∞
0

1
2
χ2

1 = 4πmc
1
2
χ2

1 .

Here we have used the same arguments as in equation (3.44). It is clear that one can
perform an analogous calculation for the term involving ∂rδψ. The rest of the terms are
dealt with straightforwardly by integrating along r. The resulting action is:

Seff

(2πα′)2
=
∫
d3x

{
f2
π||

4
∂0χ

∗∂0χ−
f2
π⊥
4
∂iχ
∗∂iχ− µ

i

2
(χ∂0χ

∗ − χ∗∂0χ) +
mq

2
〈Ψ̄Ψ〉0χ

∗χ

}
,

(3.51)
where we have defined a complex scalar field χ = χ1 + iχ2. The constants in the effective
action are given by:

f2
π||

4
=
N
2

∞∫
0

dr
g(r)R4l2

(r2 + l2)2
;

f2
π⊥
4

=
N
2

∞∫
0

dr
g(r)R4l2

(r2 + l2)2 +R4H2
, (3.52)

µ =
N
8
πR4H; 〈ψ̄ψ〉 = −(2πα′)N ccr ; N = 4πNf

µ5

gs
; mq =

m

2πα′
.
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The effective action (3.51) is very similar to the one considered in ref. [30], where the
author studied Goldstone bosons in linear sigma models with chemical potential, only we
have further broken the Lorentz symmetry by the introduction of an external magnetic
field. The peculiar feature of this effective Lagrangian is the single time derivative term
that is responsible for the unusual quadratic dispersion relation. In ref. [30] the authors
have shown that the number of goldstone modes with quadratic dispersion relation is
half the number of broken generators. This is exactly what we observe here (two broken
generators but only a single goldstone mode).

On the other hand, for the pseudo-Goldstone mode ω → 0 and to leading order the
effective action (3.51) can be written as:

Sfeff =
∫
d3x

{
1
2

Σεab∂0U
aU b − Σβh

1
2
Ua2 − 1

2
F 2∂iU

a∂iU
a

}
; a = 1 or 2 , (3.53)

where

Ua = (2πα′)χa ; Σ = 2µ; F 2 =
f2
π⊥
2

; βh = −mq〈ψ̄ψ〉
2µ

= c̃crm̃
4
√
H

πR
. (3.54)

Equation (3.53) corresponds to the effective action describing a ferromagnet in an external
magnetic field h with a spontaneous magnetization Σ and a magnetic coupling β [11]. Here
~U = (U1, U2, U3) is a unit vector corresponding to the direction of the spontaneous mag-
netization of the ferromagnet, and the action (3.53) is describing quadratic fluctuations of
the magnetization near the ordered state U3 = 1. The fact that the effective external mag-
netic field h is proportional to the bare mass m̃ is to be expected since in both descriptions
these are the small parameters that reduce the exact global symmetry to an approximate
one by coupling to the corresponding order parameters (magnetization and quark conden-
sate corresponding). If one takes into account the re-definitions from equation (3.54) and

the definitions of ω̃ and ~̃k, it is straightforward to check that the dispersion relation of
ferromagnetic spin waves [11]:

ω = γk2 + βh ; γ =
F 2

Σ
, (3.55)

is exactly that of equation (3.35).
Of course many different microscopic systems exhibit the same low energy behavior and

hence are described by the same effective Lagrangian. Furthermore the fact that the mass
generation process in the D3/D5 system is associated to precisely the same global symmetry
breaking pattern (SO(3) → SO(2)) as the transition from paramagnetic to ferromagnetic
phase is also very suggestive. However it is the peculiar single derivative term coming from
the Wess-Zumino contribution that is responsible for the observed dispersion relation. Here
we have not investigated how far one can go in describing properties of ferromagnets using
the D3/D5 set up. It would be interesting to study interaction terms, which would require
expanding the effective action beyond quadratic order. In any case it is somewhat satisfying
that the dispersion relation of pseudo-Goldstone modes can be related to a real condensed
matter phenomenon such as magnon spin waves.
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4 Universal properties of magnetic catalysis in Dp/Dq systems

In this section we focus on some universal features of the mechanism of spontaneous symme-
try breaking in an external magnetic field in the context of the Dp/Dq system. In particular
we explore the observed discrete self-similar behavior of the theory in the vicinity of the
trivial embedding l ≡ 0 corresponding to the non-symmetry breaking phase. As we men-
tioned in section 2 and section 3, for the D3/D7 and the D3/D5 systems, this embedding is
unstable and the instability is manifested as a multi-valuedness of the equation of state in
the condensate versus bare mass plane (m̃, c̃) seeded by a logarithmic spiral structure (see
figure 2 and figure 5). This spiral structure has been explored in details in ref. [5] in the case
of the D3/D7 set up. It has been shown that the spectrum of meson-like excitations also
exhibits discrete self-similar structure in the tachyonic sector of the theory. It is interesting
that the same structure appears for other first order phase transition in the Dp/Dq set up,
such as the meson melting [32] and electrically driven insulator/conductor phase transi-
tions [33, 34]. In ref. [32] it was pointed out that the critical exponents (or more appropri-
ately “scaling exponents”) characterizing the logarithmic structure exhibit universal prop-
erties and depend only on the dimension of the internal Sn sphere wrapped by the Dq-brane.
A similar analysis was performed in ref. [34] for the case of electrically and R-charge chemi-
cal potential driven phase transitions and another set of “scaling exponents” was obtained.
Here we will extend the analysis of the spiral structure in the case of the D3/D7 system
performed in ref. [5] to the general case of Dp/Dq systems T-dual to the D3/D7 intersection
and will show that the corresponding scaling exponents guarantee the existence of a discrete
self-similar behavior in all Dp/Dq systems of potential phenomenological interest. This sug-
gests the universal role of the external magnetic field as a strong catalyst of mass generation.

To begin with, let us consider the zero temperature Dp-brane solution, given by:

ds2 = K
− 1

2
p

(
−dt2 +

p∑
i=1

dx2
i

)
+K

1
2
p

(
du2 + u2dΩ2

8−p
)
,

eΦ = gsK
(3−p)/4
p ; C01...p = K−1

p , (4.1)

where Kp(u) = (R/u)7−p and R is a length scale (the AdS radius in the p = 3 case).
Now if we introduce a Dq-brane probe having d common space-like directions with the
Dp-brane, wrapping an internal Sn ⊂ S8−p and extended along the holographic coordinate
u, we will introduce fundamental matter to the dual gauge theory that propagates along a
(d+ 1)-dimensional defect.

Next we parameterize the transverse 9− p plane du2 + u2dΩ2
8−p by:

dρ2 + dL2 + ρ2dΩ2
n + L2dΩ2

7−p−n , (4.2)

where dΩ2
m is the metric on a unit radius m-sphere and ρ2 + L2 = u2. We also introduce

an external magnetic field H/2πα′, corresponding to the Fp−1,p component of the field
strength tensor, by fixing a constant B-field in the (xp−1, xp) plane:

B(2) = Hdxp−1 ∧ dxp . (4.3)
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Then the DBI part of the Lagrangian governing the classical embedding of the probe is
given by:1

L ∝ e−Φ
√
−|gαβ| =

√
|Ωn|
gs

ρn
√

1 + L′2

√
1 +

H2R7−p

(ρ2 + L2)
7−p
2

. (4.4)

The equation of motion for the classical Dq-brane embedding is given by:

∂ρ

(
ρnL′√
1 + L′2

√
1 +

H2R7−p

(ρ2 + L2)
7−p
2

)
+

7− p
2

ρn
√

1 + L′2

(ρ2 + L2)
9−p
2

LH2R7−p√
1 + H2R7−p

(ρ2+L2)
7−p
2

= 0 . (4.5)

For large ρ→∞ the second term in equation (4.5) vanishes and the solution L(ρ) has the
asymptotic behavior:

L(ρ) = m+
c

ρn−1
+ · · · , (4.6)

which encodes [14, 16] the bare quark mass mq = m/2πα′ and the quark bilinear condensate
〈ψ̄ψ〉 ∝ −c of the dual gauge theory.

It is also clear that the equation of motion (4.5) has a trivial solution L(ρ) ≡ 0, which
preserves the rotational symmetry in the 8 − p − n plane transverse to both the Dp and
Dq-branes. This solution has zero bare quark mass and corresponds to the non-symmetry
breaking phase of the dual gauge theory. The solutions in the vicinity of L ≡ 0 are unstable
and correspond to the interior of the spiral structure that we are studying. In order to
obtain the scaling exponents characterizing the spiral we will zoom in on the region close
to the origin of the (ρ, L) plane. We first introduce dimensionless variables via:

ρ = ρ̃RH
2

7−p ; L = L̃RH
2

7−p ; m̃ = mRH
2

7−p ; c = c̃RnH
2n

7−p ; (4.7)

and now rescale:
ρ̃ = λρ̂ ; L̃ = λL̂ . (4.8)

In the limit λ→ 0 equation (4.5) becomes:

∂ρ̂

(
ρ̂n

(ρ̂2 + L̂2)
7−p
4

L̂′√
1 + L̂′2

)
+

7− p
2

√
1 + L̂′2

ρ̂nL̂

(ρ̂2 + L̂2)
11−p

4

= 0 . (4.9)

The solutions to equation (4.9) have the scaling property that if L̂(ρ̂) is a solution, then
so is 1

µ L̂(µρ̂). In order to explore the vicinity of the critical L̂ ≡ 0 solution we define

L̂ = 0 + ζ(ρ̂) and linearize with respect to ζ, the result is:

∂ρ̂

(
ρ̂n−

7−p
2 ζ ′

)
+

7− p
2

ρ̂n−
11−p

2 ζ = 0 . (4.10)

Next we look for solutions of equation (4.10) of the form ζ = ρ̂ν . The quadratic equation
for ν that we obtain is:

2ν2 + (n+ d− 6)ν + (n− d+ 4) = 0 . (4.11)
1We consider only systems T-dual to the D3/D7 one, which imposes the constraint p− d + n + 1 = 4.
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We have used the constraint p = 3+d−n. Now in order to have a logarithmic spiral (which
seeds the multi-valuedness of the equation state) we need to have two complex roots. The
condition for that is:

(n+ d− 6)2 < 8(n− d+ 4) . (4.12)

Note that in order to be able to turn on a magnetic field we need d ≥ 2. In addition we are
not interested in theories with d > 3. It is then easy to check that for all possible values
of n (clearly n < 5) the condition (4.12) is satisfied. Then the roots of equation (4.11) ν±
are given by:

ν± = −rn,d ± iαn,d ; rn,d =
n+ d− 6

4
≥ −3

4
; αn,d =

1
4

√
8(n− d+ 4)− (n+ d− 6)2 .

(4.13)
The inequality in the second formula in equation (4.13) is saturated for the minimum
possible values (n, d) = (1, 2). The most general solution of equation (4.10) can then be
written as:

ζ(ρ̂) =
1

ρ̂rn,d
(A cos(αn,d ln ρ̂) +B sin(αn,d ln ρ̂)) . (4.14)

Now the scaling property of equation (4.9) suggests the following transformation of the
parameters (A,B) under re-scaling of the initial condition L̂(0) ≡ L0 → 1

µ L̂0:(
A′

B′

)
=

1
µrn+1

(
cos (αn lnµ) sin (αn lnµ)
− sin (αn lnµ) cos(αn lnµ)

)(
A

B

)
. (4.15)

For a fixed choice of the parameters A and B, the parameters (A′, B′) describe a loga-
rithmic spiral, whose step and periodicity are set by the real and imaginary parts of the
critical/scaling exponents rn,d and αn,d. Note that from the inequality in equation (4.13)
it follows that rn,d + 1 ≥ 1

4 > 0 and hence the spiral is revolving as one scales away from
the critical L̂ ≡ 0 solution.

This self-similar structure of the embeddings near the critical solution L̂ ≡ 0 in our
zoomed in region parameterized by (ρ̂, L̂) is transferred by a linear transformation to the
structure of the solutions in the (m, c) parameter space. The parameters corresponding
to the critical L ≡ 0 embedding are given by (0, 0). Then sufficiently close to the critical
embedding we can expand:(

m

c

)
= M

(
A

B

)
+O(A2, B2, AB) . (4.16)

The constant matrix M depends on the properties of the system. Generically it should be
invertible (numerically we have verified that this is the case) and therefore in the vicinity
of the parameter space close to the critical embedding (m, c) there is a discrete self-similar
structure determined by the transformation:(

m′

c′

)
=

1
µrn+1

M

(
cos (αn lnµ) sin (αn lnµ)
− sin (αn lnµ) cos(αn lnµ)

)
M−1

(
m

c

)
. (4.17)
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Figure 11. A plot of
√

7
4π log L̃in vs. m̃/L̃1/2

in . For sufficiently small L̃in the curve is an harmonic
function of unit period.

Note that the linear map corresponding to the constant matrix M would rotate, stretch
and/or shrink (along the different axes) the spiral defined via the transformation (4.15).
However the overall shape of the curve defined via equation (4.17) still remains a spiral
revolving around the origin of the (m̃, c̃) plane (see figure 5 for the case of the D3/D7
system). This suggests that the state corresponding to the center of the spiral (the L ≡ 0
solution) is unstable and hence there is a dynamical mass generation in the theory. (The
stable state at zero bare quark mass has a non-zero condensate) Therefore we learn that for
all Dp/Dq systems T-dual to the D3/D7 intersection (and with d ≥ 2 so that a magnetic
field can be switched on) the effect of the magnetic field is to break a global internal
symmetry and generate a dynamical mass.

To conclude this discussion we will provide a numerical check of the consistency of our
analysis. To this end we consider the separation of the Dq and Dp branes at Lin ≡ L(0)
(note that Lin is proportional to the dynamically generated quark mass). Now if we start
from some L0

in and transform to Lin = 1
µL

0
in, we can solve for µ and generate a parametric

plot of m̃/(L̃in)rn,d+1 vs. αn,d log L̃in/2π. The transformation (4.17) requires that the
resulting plot be an harmonic function of unit period. For the particular case of the
D3/D5 system we have r2,2 = −1/2 and α2,2 =

√
7/2. The corresponding plot is presented

in figure 11. For sufficiently small L̃in the plot is indeed an harmonic function of unit period.

5 Conclusion

In this paper we have investigated the properties of strongly coupled, large Nc gauge the-
ories in the presence of an external magnetic field. Both in three and four dimensions, the
holographic approach reproduces the behavior expected from classical field theory argu-
ments and the magnetic catalysis of global symmetry breaking is shown to be a universal
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feature of a family of strongly coupled gauge theories. This is another success for the
internal consistency of the gauge/gravity duality.

As has now become commonplace in such studies, the spectrum of mesonic states is
directly identifiable by numerical methods. Moreover, in the present study we are able
to make a large number of statements analytically by studying the systems in the chiral
limit. Indeed in this regime, in which the global symmetry is broken dynamically due to
the presence of the magnetic field the results are almost completely tractable analytically.

In 3 + 1 dimensions we are able to show that the Gell-Mann–Oakes–Renner relation
holds exactly and in this setting where a subgroup of the special relativistic transformations
remains unbroken in the presence of the magnetic field, a relativistic dispersion relation is
indeed recovered. In the 2+1 dimensional case however, all trace of the boost invariance is
lost once the magnetic field is turned on. The counting of Goldstone modes then becomes
more subtle but we are able to show that this holographic setup gives the correct number
of massless modes expected from the non-relativistic Goldstone counting rules. In addition
we are able to show that these modes obey a quadratic dispersion relation, in contrast to
the relativistic case in one spatial dimension higher.

In the present investigation we have focused on the low energy chiral lagrangian, cal-
culated up to quadratic order in the goldstone mode excitations. In the 2 + 1 dimensional
setting we were able to show explicitly that at this order our system reproduces the low
energy behavior of spin-wave excitations in a ferromagnet. The matching of symmetry
breaking patterns between the two systems is the root of this equality. It seems unlikely
however that such an agreement will hold to higher order. It would certainly be possible to
investigate the systems discussed here at higher order in the low energy degrees of freedom
and this would be an interesting direction for future work.

The study of flavor degrees of freedom in a wide range of conditions is certainly well
worth pursuing further using the methods illustrated in this paper. The magnitude of the
phase-space involved with studying flavor, both abelian and non-abelian, in the presence
of external electric fields and magnetic fields, temperature and finite chemical potential in
a variety of dimensions means that there is surely plenty more to be found in even the
simplest systems.

In the case of 2 + 1 dimensions, the understanding of gauge theories in the presence
of low temperature and high magnetic field is of much interest. In particular this is one
area which may be accessible experimentally and one may be able to gain insight into such
intriguing phenomena as the quantum hall effect. It seems very likely that we will make
further inroads into understanding such effects using the AdS/CFT correspondence in the
not too distant future.

The diversity of phenomena that we can investigate using holographic techniques is
clearly far larger than was expected in the early days of the AdS/CFT conjecture. The
prospects of obtaining deep insight into such fascinating systems as non-conventional su-
perconductors, the quantum hall effect and strongly coupled plasmas are real and exciting
and the community continues to make progress in these directions.
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A Low energy effective action for Φ

Let us begin with the Lagrangian for the quadratic fluctuations equation (2.11)

LΦΦ = −(2πα′)2µ7

gs

1
2

√
|gS3 |

gR2L2
0

ρ2 + L2
0

Sab∂aΦ∂bΦ ,

LΦA = −(2πα′)2µ7

gs

√
|gS3 |H∂ρKΦF01 ,

LAA = −(2πα′)2µ7

gs

√
|gS3 |

1
4
gSaa

′
Sbb
′
FabFa′b′ . (A.1)

In order to obtain an effective action for the fluctuations along Φ we will integrate out the
fluctuations of the gauge field and in particular the A0, A1 components. In more detail the
contribution from the last two equations in equation (A.1) can be written as:

LAA + LΦA ∝
1
2
gS11Saa

′
(−∂aA0∂a′A0 + ∂aA1∂a′A1)− 1

2
g(S11)2(∂0A0 − ∂1A1)2

+H∂ρKΦF01 . (A.2)

To integrate out the A0, A1 components of the gauge field we simply obtain the equations
of motion for A0 and A1 and substitute them into the action. The equations of motion are:

∂a(gS11Saa
′
∂aA0) + g(S11)2∂0(∂0A0 − ∂1A1) +H∂ρK∂1Φ = 0 ,

∂a(gS11Saa
′
∂aA1) + g(S11)2∂1(∂0A0 − ∂1A1) +H∂ρK∂0Φ = 0 , (A.3)

which can be written as:

∂a

(
gS11Saa

′
∂aF01

)
−H∂ρK�(1,1)Φ = 0 ; �(1,1) ≡ −∂2

0 + ∂2
1 ,

∂a

(
gS11Saa

′
∂a(∂0A0 − ∂1A1)

)
− g(S11)2�(1,1)(∂0A0 − ∂1A1) = 0 . (A.4)

Substituting back into the action (A.2) and integrating by parts leads to:

LAA + LΦA ∝ −
1
2
HK∂ρ(ΦF01) . (A.5)
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The equation of motion for F01 can be written as:

∂ρF01 =
HK

Ψ2
1

�(1,1)Φ−
1

Ψ2
1

∫
dρg(S11)2�̃F01 , (A.6)

where Ψ1 is defined in equation (2.22). Now we substitute into the action (A.5) and denote
by Φ̃(x) the dimensionally reduced field Φ, to obtain:

LAA + LΦA = (2πα′)2µ7

gs

√
|gS3 |

1
2
H2K2

Ψ2
1

Φ̃�(1,1)Φ̃ + . . . , (A.7)

where we have ignored higher order derivatives terms. Combining this with the dimension-
ally reduced term LΦΦ we obtain the result:

L ∝ 1
2

(
νΨ2 +

H2K2

Ψ2
1

)[
−(∂0Φ̃)2 + (∂1Φ̃)2

]
+

1
2
ν̃Ψ2

[
(∂2Φ̃)2 + (∂3Φ̃)2

]
+ . . . . (A.8)

Where ν, ν̃ and Ψ are defined in equation (2.22). In order to obtain a mass term for the
dimensionally reduced field Φ̃ we have to take into account the radial dependence of the field
Φ. Our analysis from section 2.2.1 suggests that we should consider the following ansatz:

Φ(ρ, x) =
ψ(ρ)
Ψ(ρ)

Φ̃(x) , (A.9)

where Ψ is defined in equation (2.22) and we require that for the spontaneous symmetry
breaking classical embedding (denoted by L̄0) we have that ψ|L̄0

= Ψ|L̄0
≡ Ψ̄. Then if we

consider embeddings in the vicinity of L̄0 corresponding to small bare quark mass δm we
can expand:

ψ = Ψ̄ + δψ ; Φ(ρ, x) =
[
1 + δ

(
ψ

Ψ

)]
Φ̃(x) . (A.10)

Now if we demand that as δm → 0 we have small momenta and a small mass term
(which vanish at the critical embedding) to leading order we still have the expression from
equation (A.8) plus some small mass term involving derivatives along ρ:

L ∝ 1
2

(
ν̄Ψ̄2 +

H2K̄2

Ψ̄2
1

)[
−(∂0Φ̃)2 + (∂1Φ̃)2

]
+

1
2

¯̃νΨ̄2
[
(∂2Φ̃)2 + (∂3Φ̃)2

]
−1

2
∂ρ

[
Ψ̄2∂ρδ

(
ψ

Ψ

)]
Φ̃2 + . . . , (A.11)

where we have integrated by parts the last term and the dots represent higher derivatives
terms and other sub-leading terms. Now it is straightforward to integrate along the unit
S3 and the radial coordinate ρ. Let us provide some more details in the integration of the
mass term:
∞∫

0

dρ∂ρ

[
Ψ̄2∂ρδ

(
ψ

Ψ

)]
Φ̃2 =

[
(Ψ̄δψ′ − δψΨ̄′)+(δΨΨ̄′ − δΨ′Ψ̄)

]
Φ̃2
∣∣∣∞
0

=−2cδmΦ̃2 . (A.12)

Then for the final form of the effective action one obtains:

Seff =−N
∫
d4x

{[
−(∂0Φ̃)2+(∂1Φ̃)2

]
+γ
[
(∂2Φ̃)2+(∂3Φ̃)2

]
− 2〈ψ̄ψ〉

f2
π

mqΦ̃2

}
+. . . , (A.13)
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where:

N = (2πα′)2Nf
µ7

gs
π2

∞∫
0

dρ

[
ν̄Ψ̄2 +

H2K̄2

Ψ̄2
1

]
; f2

π =
4N

(2πα′)2
; mq =

δm

2πα′
, (A.14)

γ =

∞∫
0

dρ
(¯̃νΨ̄2

)/ ∞∫
0

dρ

(
ν̄Ψ̄2 +

H2K̄2

Ψ̄1
2

)
; 〈ψ̄ψ〉 = −

Nf

(2πα′)3

c

2πgs
. (A.15)

One can see that this is the most general quadratic action consistent with the
SO(1, 1) × SO(2) space-time symmetry. Furthermore the explicit form of the mass term
is in accord with the Gell-Mann–Oakes–Renner relation (2.37). To obtain the expression
for f2

π provided in equation (A.14) one needs to consider the strict mq → 0 limit and use
that in this limit Φ̃ = φ/(2πα′). Next since φ corresponds to rotations in the transverse
R2 plane and is thus the angle of chiral rotation [16], the normalization of the kinetic term
in the effective action (A.13) is given by N = (2πα′)2f2

π/4. The last relation determines
f2
π in terms of N .
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